
A Spatial Logic for Concurrency (Part II)

Luı́s Caires� and Luca Cardelli�

� Departamento de Informática FCT/UNL, Lisboa, Portugal
� Microsoft Research, Cambridge, UK

We present a modal logic for describing the spatial organization and the behavior of
distributed systems. In addition to standard logical and temporal operators, our logic
includes spatial operations corresponding to process composition and name hiding, and
a fresh quantifier.

1 Introduction

We develop a logic to describe properties of distributed concurrent systems, for spec-
ification and model-checking purposes; we believe that the peculiar characteristics of
such systems justify the introduction of new logical constructs. Our first emphasis is on
distributed systems, meaning that we should be able to talk about properties of distinct
subsystems, such as subsystems that reside at different locations, and subsystems that
privately share hidden resources. For this purpose, we introduce spatial (as opposed to
temporal) logical operators; for example, we may talk about a property holding some-
where (as opposed to sometimes). Our second emphasis is on concurrent systems: we
want a logic that unambiguously talks about concurrency and (nowadays) privacy. For
this purpose, the intended model of our logic is built explicitly from a standard pro-
cess calculus (an asynchronous �-calculus). Our formulas denote collections of pro-
cesses subject to certain closure conditions, with some logical operators mapping di-
rectly to process composition and name hiding. In Part I of this paper [2, 4] we study
this intended model, which is used here to establish the soundness of the logical rules.
The central focus of this Part II, however, is proof theory. We regularize and gener-
alize the logics introduced in [1, 7, 8], and we prove a cut-elimination result for the
first-order fragment, including cut-elimination for a fresh name quantifier (cf. Nominal
Logic [13]).

A formula in our logic describes a property of a particular part of a concurrent
system (a world) at a particular time; therefore it is modal in space as well as in time. In
our sequents, formulas are indexed by the worlds they predicate over [17], so a sequent
can talk about many distinct worlds at once. Each sequent incorporates also a finite set
of constraints over the worlds, including process reduction and congruence constraints.
In general, the constraint structure can be fashioned as an algebra [18]; which in our
case is a relatively complex process algebra.

The fragment of our logic that deals with process composition is relatively straight-
forward: composition shows up in the logic as a tensor, which is strongly related to
linear connectives. The sequent-style presentation of this fragment should look rela-
tively familiar, except for the constraints part. The relevant constraints are essentially

2 Luı́s Caires and Luca Cardelli

constraints over a (concurrency) monoid, with some specific interactions with reduc-
tion. Along these lines, we could also easily add an explicit structure of locations to the
process calculus, and related logical operators, as done in [7].

Far less obvious is what to do about hiding of private resources, which is represented
in �-calculus by the name hiding operator. The hiding of a name in a process should
correspond, logically, to a “hiding quantifier” that binds a private name in a formula;
such a formula could then describe the use of that private name in the process. The
study of such a quantifier, from a logical point of view, was started in [5, 1], and later
independently in [8]. Our current understanding is that it is best to decompose such a
hiding quantifier into two operators: a modal version of the fresh quantifier of Gabbay
and Pitts [10], and a logical operator, called revelation [8], that relates to name hiding in
strong analogy to the way tensor relates to process composition. A simple combination
of fresh quantification and revelation then yields hiding, in the intuitive sense that if
something is hidden, we can choose to name it (reveal it) by any name that is fresh.

Many natural examples of use of our logic involve recursive formulas. Two typ-
ical examples of recursion that attract us in our context are: (1) a process having an
arbitrary number of hidden resources, and (2) a process generating an infinite supply
of fresh names. Particularly, the interaction of recursion and freshness is semantically
quite challenging, and was investigated in Part I. In this paper we go one step further
and introduce second-order quantification in the logic, from which we can define least
and greatest fixpoints of formulas, almost along standard lines [14].

Structurally, our logic consists of a collection of left-right rules for logical operators,
including essentially the standard rules of classical sequent calculus, plus the ones for
temporal and spatial operators. In addition, there are special rules about the worlds: they
add meaning to the logical operators, allowing us to capture deep properties of process
calculi without interfering very much with the core left-right rules.

We highlight here the left and right rules for composition,���, which include many
of the interesting features of our sequents. Sequents have the form ���� � � , where
��� is a finite set of constraints, and � , � are multisets of indexed formulas.

[X and Y not free in the conclusion]
��� �

	
� X �Y ��� X � �� Y � � � �

����� � � ��� � �
(�L)

���� �
 � ���
���� � � � ��� �

	
��
��

���� � � � �����
(�R)

The ��R) rule says: if we can show that index
 satisfies formula � (i.e, that � holds at
world
, written
 � �), and that � satisfies �, and if we can show from the constraints
in � that �

	
�
��, then we can conclude that � satisfies ���. Hence, the reading of this

logical rules incorporates much of the intended satisfaction semantics [17]. The (�L)
rule features the assumption “X and Y not free in the conclusion (of the rule)”. This
assumption means, in particular, that X and Y are completely generic and unconstrained
variables. A reading is: to show that � � ��� entails �, we must show that for an
arbitrary decomposition of � as X �Y , we have that X � � and Y � � entail �.

Composition also has a number of “rules about the world”, as mentioned above.
Here is a simple one:

��� �
	
� ��� � � ��

	
�� �

���� � �
(S��)

A Spatial Logic for Concurrency (Part II) 3

Note that these world rules do not involve the logical connectives (we have � � �

above and below), and instead affect the ��� part. In most process calculi we have
that if ��
 � � then both � � � and
 � �. This property does not derive from (�L)
and (�R), but is embedded in (S��). The rule reads as follows: if we can already infer
from the � part of the constraints that ��

	
�� �, and we have an additional constraint

that �
	
� �, that constraint is redundant and we can remove it. In this style, we can

incorporate many peculiar properties of process calculi as world rules; many such rules
analyze the consequences of an equation between two spatial operators (above, � vs. �),
and are listed in Figure 8. All such rules have a similar reading in terms of eliminating
“redundant” constraints.

Because of the regular left-right structure of our core rules, cut elimination falls
largely along predictable lines; the indexes do not hinder, and rules such as (S��) can be
dealt with separately. The main difficulty is in the cut elimination case for the freshness
quantifier. As in Nominal Logic, the result depends on an “equivariance” property of
the logic [13], which is used to perform an �-conversion of fresh names over a whole
derivation. Equivariance is embedded, in our case, in the () rule in Figure 7, whose
soundness depends on the main theorem of Part I. Expressing this rule in the general
case of open formulas, requires introducing explicit transpositions over formulas, which
entail some technical complications.

Related Work A logic for a process calculus including a tensor operator and a hiding
quantifier was developed by Luı́s Caires in [5, 1], but a satisfactory semantic treatment
for the latter connective not was achieved before the contributions of [8, 2]. Andy Gor-
don was a coauthor with Luca Cardelli of initial versions of spatial logics for the Am-
bient Calculus [7, 8], which also investigated connections with linear logic. The present
paper contains the first presentation of such a logic as a proper sequent calculus. More-
over, we now target the logic towards a more standard �-calculus.

The first main difference between our logic and standard logics of concurrency (e.g.
[11]) is the presence in our case of a tensor operator that corresponds to process com-
position. Usually, those other logics require formulas to denote processes up to bisim-
ulation, which is difficult to reconcile with a tensor operator that can make distinctions
between bisimilar processes (however, such an operator was anticipated by Dam [9]). In
our case, we only require formulas to denote processes up to structural equivalence, so
that a tensor operator makes easy sense. Sangiorgi has shown, for a closely related logic,
that the equivalence induced by the logic is then essentially structural equivalence [16].

The work of Gabbay and Pitts on the freshness quantifier [10] has become central
to our logic. The work of O’Hearn and Pym on Bunched Logics [12] and of Reynolds
on Separation Logic [15] is closely related to ours, at least in intent. The style in which
the logic is formalized is an extension of work by Alex Simpson [17], and is also re-
lated, at least superficially, to labeled deductive systems [18]. A decidable and complete
propositional fragments of a related logic has been recently investigated [6].

In Section 2 we introduce the algebra of constraints. In Section 3 we introduce our
sequent calculus, which can be shown sound by an interpretation in the model of Part
I. In Section 4 we investigate proof theory, and in particular cut elimination for the
first-order fragment of our logic. In Section 5 we go through a set of basic examples, to
illustrate the expressive power of the logic.

4 Luı́s Caires and Luca Cardelli

2 Preliminaries

In this Section we introduce�-algebras, and constraint theories over the term �-algebra.
A �-algebra is a two sorted algebra, with a sort for names and a sort for processes,
and equipped with the basic process operations of composition, name hiding and name
transposition. Hence, many process calculi are �-algebras, in particular the asynchronous
�-calculus A� which is the intended model of our logic. We summarize the main con-
cepts needed for our current purposes, a more detailed presentation can be found in [3].

Definition 2.1 (�-algebra). A �-algebra is a structure ���� ��� ���� ���
�
� ���

�
�

such that � is a countable set of labels ���, � is a set of processes �������, � (void) is
a distinguished process in � , ��� (composition) is an operation � �� 	 � , �����
(name hiding, a.k.a. restriction) is an operation��� 	 � , �����

�
� (transposition

on labels) is an operation����� 	 � and �����
�
� (transposition on processes)

is an operation � � � � � 	 �. We refer to the � part of a �-algebra� by ��, and
likewise for the remaining components (e.g.,��).

Of special interest is the term �-algebra P, whose terms of sort process (called indexes)
will be used to label formulas in sequents and denote the worlds of our modal logic,
while terms of sort name (called name terms) denote the pure names used in processes.
Given a set
 of names variables and a set � of process variables, the term �-algebra
P is the free �-algebra over a set of variables � �
 for the sort of name terms � ,
and over a set of variables X � � for the sort of indexes . We use the meta-variables
���� � � � ; ��
� � � ; X � Y �Z � �; �� �� � �
 ; � � � � � � . Given an index or
name term �, we denote by afv��� its set of algebraic free (name and process) variables,
defined simply as the collection of all the variables in
 and � occurring in such terms.

Processes relate to each other both by spatial and temporal constraints: in the term
�-algebra such constraints are represented by spatial constraints, expressing that the
processes denoted by the equated indexes have the same spatial structure (cf. �-calculus
structural congruence), and temporal constraints, expressing that the processes denoted
by the given indexes are related by a reduction (cf. �-calculus reduction).

Definition 2.2 (Constraint). A constraint � is either an index equation, a reduction, a
name apartness, or a set apartness, defined by

� ��� Constraints
�
	
�
 Index equation ���
 � � �	
 Reduction ���
 � �

��� Name apartness ���� � � � ��� Set apartness �� � � � � � � �

In order to handle freshness explicitly, we also introduce apartness constraints:���
meaning that the name terms� and � denote distinct names, and��� meaning that
the name term � denotes a name distinct from any name in the (finite) support [2] of
the property denoted by the propositional variable� (see Section 3.1).

A constraint theory is a finite set of constraints, presenting a particular world struc-
ture. Such a structure enjoys a number of structural properties, axiomatized by the set
of closure rules in Fig. 1. For instance, (Spatial) characterizes properties of structural
congruence (e.g., monoidal laws for composition and name extrusion). We write � � �
to say that the constraint � holds in the closure of �, writing �

	
�� �

� for � � �
	
� ��,

and likewise for the relations �� and	� .

A Spatial Logic for Concurrency (Part II) 5

(Basic)
�
�
� � � � � �

�
�� �

��� � � � ��
�
�

�� � � � � ��� �

(Spatial)

���
�
�� �

���
�
�� ���

�������
�
�� �������

�����
�
�� �

���������
�
�� �����

���������
�
�� ���������

�������������
�
�� �������������

(Congruence)

�
�
�� �

�
�
�� �� � �� �

�� �

�
�
�� ��	 �� �

�� ��� � �
�
�� ���

�
�
�� � � ���

�
�� ���

�
�
�� �	�

�
�� �� �����

�
�� �����

�
�
�� �	 �

�
�� �� � ���
��

�
�� �
�����

(Apartness)
��

�
�	 ��

�
�� ������

�
�� �

��
�
�� ��

�
�

��
�
�	 �

�
�� ��	 �

�
�� �� � �� �

�
��

��
�
	 �

�
�� � � ��

�

(Transposition)

��
�
�� �

������
�
�� �����

������
�
�� �������

�������
�
�� ���������

���
�
�� �

������
�
�� �

������
�
�� �

�
�
�� �����	 �

�
�� ����� �

������
�
�� �

(Reduction)

��� �	 �
�
�� �	 �

�
�� � � � �� �

��� �� ��� �� ���
��� �� ������� �����
��� �� ���� ��

Fig. 1. Closure of constraint theories.

3 Sequent Calculus

3.1 Formulas and Sequents

Formulas, defined in Fig. 2, include classical propositional connectives, F, �, �, and
the basic spatial operators: ��� (the tensor, representing the parallel composition of
processes), � (the unit of the tensor, representing the collection of void processes), and
��� (the linear implication associated with the tensor). This last operator corresponds
to context-system specification of processes, which are the concurrency-theory equiv-
alent of pre/post conditions. Name hiding induces a pair of adjunct logical operators.
The formula ��� means that a hidden name, which we choose to call �, exists in a
restricted scope that satisfies property�. It is matched by a �-calculus term ����� pro-
vided that � satisfies � (see rule (�R) in Fig. 4, and the example in Section 5; see [8,
2] for further details.) The formula ��� is the logical adjunct of ���. The notion of
fresh name is introduced by a quantifier��	�; this means that � denotes a name that is
fresh with respect to the names used either in � or in processes satisfying �. ��	� is
defined along the lines of the freshness quantifier of Gabbay-Pitts [10, 13], and its se-
mantics is designed to be compatible with recursive formulas. A logical operator ����
allows us to assert that a message� is present over channel �, giving us some minimal
power to observe the behavior of processes. A next-step temporal operator, ��, allows

6 Luı́s Caires and Luca Cardelli

�	�	 � ��� Name Terms ��	�	 � � � �
� Name variable �� � ��
������ Transposition term

�	� ��� Formulas
F False ��� Hiding
� � � Conjunction �	�
 Message
�� � Implication �� Next
� Void ���� Name quantification
��� Composition ���� Freshness quantification
� � � Guarantee Propositional variable
��� Revelation ��� Property quantification

Formulas are subject to: no occurrence of a variable � in a transposition term is under
the scope of a ��� or a ��.

Fig. 2. Formulas

us to talk about the behavior of a process after a single (unspecified) reduction step.
Finally, we have a second-order quantifier and related propositional variables.

Formulas are the same as in Part I [4], except that we now allow formulas to contain
general name terms (including explicit transpositions), and not only variables and pure
names. Therefore, we will refer to the formulas as defined in [2] by simple formulas.

In ��	�, ��	� (and ��	�), the variables � (and �) are bound with scope the
formula �. We assume defined on formulas the standard relation �� of �-conversion
(safe renaming of bound variables), but will never implicitly take formulas “up to �-
conversion”: our manipulation of variables via �-conversion steps will always be quite
explicit. We also assume defined as usual the set fv��� of free name variables in �, and
the set fpv��� of free propositional variables in �. Then, we define the set of logically

free variables of a formula � by lfv���
�

� fv��� � fpv���. If � is a name term and
� is a formula then ������ denotes the formula obtained by replacing of all free
occurrences of � in � by the name term �, (nondeterministically) renaming bound
variables as needed to avoid capture of names in�.

Any substitution �� �
 	 � of pure names for name variables acts on a formula�
(respectively, on a name term �) yielding a simple formula ����� (respectively a pure
name), defined as expected. The following definition lifts the equational theory of name
terms to the level of formulas:� �� � asserts that, under any substitution that satisfies
all constraints in �, � and � denote the same simple formula.

Definition 3.1 (Equational equivalence of formulas). Given a constraint theory �,
�� is the least equivalence relation on formulas such that ������ �� ������ for
all name terms��� such that�

	
�� �.

The semantics of the freshness quantifier requires names to be chosen fresh with
respect to the free names of both processes and formulas. By the formation condition at
the bottom of Fig. 2, transposition terms in formulas never contain bound occurrences
of name variables. Hence, a maximal term in a formula is either a bound name variable,
or a term completely built out of free name variables: explicit transpositions in formulas

A Spatial Logic for Concurrency (Part II) 7

just swap free names. Thus, it is sensible to define the set ft��� of free terms of a formula
� to be the set of maximal name terms occurring in�which are not a bound occurrence
of a variable. Given a constraint theory � and a formula �, we write ��� � as an
abbreviation of ��� ft���: ��� � asserts that, under the constraints in �, � denotes a
name distinct from all names denoted by the (free) terms in formula �. We can verify
that the relations �� (between formulas) and �� (between name terms and formulas)
defined are sound with respect to their intended interpretation.

A context (���) is a finite multiset of indexed formulas of the form � � � where �
is an index and � is a formula.

Definition 3.2 (Sequent). A sequent is a judgment ���� � � where � is a constraint
theory, and� and � are logical contexts.

The right context � is interpreted as the disjunction of its formulas, the left context �
is interpreted as the conjunction of the formulas in it. Defining contexts as multisets
allows for the implicit use of exchange in proofs.

Definition 3.3 (Variables in sequents). The set of free (name, process, and proposi-
tional) variables of a context� is given by lfv��� �

�
�afv��� � lfv��� � � � � � ��.

The set of free (name, process, and propositional) variables in a sequent ���� � � is
given by afv��� � fv�� � � fv���.

N.B.: name variables � occur both in indexes � and in formulas�; process variables X
occur only in indexes; propositional variables� occur only in formulas.

We now define the semantics of sequents, namely validity. To that end we need to
interpret both constraints and formulas: this will be achieved by logical interpretations.

Definition 3.4 (Logical Interpretation). A logical interpretation� is pair �
� �� where
�� is a map of process variables into A� processes, �� is a map name of variables into
A� names , and
 is a map of propositional variables into property sets.

Hence, � is an homomorphism � of P into A�, and
 is a valuation as defined in Part I.

Definition 3.5 (Satisfaction and Validity). The relation of satisfaction between logical
interpretations � � �
� �� into A� and constraints is defined thus:

� satisfies �
	
�
 � �� ��� � ���
� � satisfies �	
 � �����	 ���
�

� satisfies ���� ����� �� ����� � satisfies ��� � ����� �� supp�
����

� satisfies the constraint theory � if � satisfies all constraints in �. A constraint � � �
is valid if every interpretation that satisfies � also satisfies �.

Semantics of formulas is defined in Part I by a mapping ���� that assigns a property
set ���� to any simple formula �, given a valuation
.

Definition 3.6 (Valid Sequent in A�). A sequent ���� � � is valid in A� if for
all logical interpretations � � �
� �� such that � satisfies all constraints in � and
���� � �������� for all � � � � � , then ��
� � �������� for some
 � � � �.

8 Luı́s Caires and Luca Cardelli

3.2 Inference Rules

Inference rules may have for premises both sequents ���� � � and assertions over the
closure of the theory � of the form �

	
��
 (mostly in the rules for spatial connectives),

� �� � (in the identity axiom), � 	�
 (in the temporal rules) or ��� � (in the
freshness rules).

The rules in the identity, structural and propositional groups (see Fig. 3) follow the
standard. Note that in (Id) indexes are identified up to

	
�� , while formulas are identified

up to�� : (Id) absorbs the simple theory of equality captured by�� , thus axiomatizing
the principle of substitution of equals for equals of name terms in formulas. We include
explicit contraction rules (CL) and (CR); weakening is admissible, and exchange may
be dealt with implicitly, since sequent contexts are multisets. In the rules for propo-
sitional connectives, indexes keep track of the processes for which the formulas are
asserted to hold, but do not interfere in any way with the constraint part of sequents.

The rules for the spatial connectives (Fig. 4) make essential use of the constraint
theories in sequents. Note that the left rules, when read bottom-up, introduce spatial
constraints into the constraint theories, and the respective right rules, when read top-
down, check corresponding constraints. While spatial rules rely on spatial constraints,
temporal rules (Fig. 5) rely on reduction constraints.

The rules for first and second order quantifiers have the expected form (Fig. 6). We
then introduce the rules for freshness (Fig. 7). Rule (�) asserts, when read bottom-
up, that there is always a name (denoted by) � that is fresh with respect to the free
names of (the process denoted by) the index �, and that is also fresh with respect to a
set of names (denoted by the name and propositional variables in) . Hence, rule (�)
corresponds to the (Fresh) axiom of Pitts’ Nominal Logic [13]. The transposition rule
() captures the property of invariance of the semantics under transposition of names
(see the main theorem of Part I). Moreover, as we shall discuss below, explicit trans-
positions and the transposition rule play an crucial role in obtaining cut-elimination
for the freshness quantifier. By ������� we denote the formula obtained by swap-
ping occurrences of � and � in �, possibly by introducing explicit transpositions: if
����� 	 	 	 � ��� is a formula with free terms ��� 	 	 	 � ��, then ������ 	 	 	 � ��� is the
formula �� ���� 	 	 	 � ����.

The rules (�L/R) for the fresh quantifier do not show the symmetry one might ex-
pect of a left / right rule pair. This fact relates to the existential / universal ambivalence of
freshness quantification (the Gabbay-Pitts property): note that (�L) follows the pattern
of (�L), while (�R) follows the pattern of (�R). Then, ��� embodies the introduction of
fresh witnesses usually present in both (�R) and (�L). Besides the freshness condition
��� ��	� of the name denoted by � with respect to the free names in the formula
��	�, the assumption �

	
�� ����
 ensures that � denotes a name that does not occur

free in the process denoted by �, cf. the semantics of ��	�.
As discussed in Section 1, world rules (Fig. 8) axiomatize certain deep (extra-

logical) properties of the worlds (inversion principles for structural congruence and
process reduction). We assert � ���� � � to state that the sequent ���� � � has a
derivation. We can show that all rules are sound with respect to the A� model of Part I:

Theorem 3.7 (Soundness). All derivable sequents are valid in A�.

A Spatial Logic for Concurrency (Part II) 9

�
�
�� �� � �� ��

	�
�	 � � � �� � ��	 �
(Id)

	�
� � � �	� 	�
�	 � � � �

	�
� �
(Cut)

	�
�	 � � �	 � � � �

	�
�	 � � � �
(CL)

	�
� � � �	 � � �	�

	�
� � � �	�
(CR)

	�
�	 � � F �
(FL)

	�
� �

	�
� � � F	 �
(FR)

	�
�	 � � �	 � � � �

	�
�	 � � � �� �
(�L)

	�
� � � �	�
	�
� � � �	�

	�
� � � � � �	�
(�R)

	�
� � � �	� 	�
�	 � � � �

	�
�	 � � �� � �
(�L)

	�
�	 � � � � � �	�

	�
� � � �� �	�
(�R)

Fig. 3. Propositional Rules.

	�	 �
�
� �
� �

	�
�	 � � � �
(�L)

�
�
�� �

	�
� � � �	 �
(�R)

[X and Y not free in the conclusion]
	�	 �

�
� X �Y
�	 X � �	Y � � �

	�
�	 � � ��� �
(�L)

	�
� � � �	�
	�
� � � �	� �

�
�� ���

	�
� � � ���	�
(�R)

	�
� � � �	� 	�
�	 ��� � � �

	�
�	 � � � � � �
(�L)

[X not free in the conclusion]
	�
�	 X � � � � �	� �

�
�� X ��

	�
� � � � � �	�
(�R)

[X not free in the conclusion]
	�	 �

�
� ����X
�	 X � � �

	�
�	 � � ��� �

(�L)
	�
� � � �	� �

�
�� �����

	�
� � � ���	�
(�R)

	�
�	 � � � � �
�
�� �����

	�
�	 � � ��� �
(�L)

	�
� � � �	� �
�
�� �����

	�
� � � ���	�
(�R)

Fig. 4. Spatial Rules.

[X not free in the conclusion]
	�	 �� X
�	 X � � �

	�
�	 � � �� �

(�L)
	�
� � � �	� ��� �

	�
� � � ��	�
(�R)

Fig. 5. Temporal Rules.

10 Luı́s Caires and Luca Cardelli

	�
�	 � � ������ �

	�
�	 � � ���� �
(�L)

[� not free in the conclusion]
	�
� � � ������	 �

	�
� � � ����	�
(�R)

	�
�	 � � ����� �

	�
�	 � � ��� �
(��L)

[� not free in the conclusion]
	�
� � � ���� �	 �

	�
� � � ���	�
(��R)

(In (�L) and (�R), the formula ���� must verify the condition in Fig. 2)

Fig. 6. Quantifier Rules.

[X 	 � not free in the conclusion, � or �]
	�	 ���	 �

�
� ����X
� �

	�
� �
(�)

�	��
�

fpv���
	�
�	 ������ � ������� �

	�
�	 � � � �
(�)

�
�
�� �����

��� ����

	�
�	 � � ������ �

	�
�	 � � ���� �
(�L)

�
�
�� �����

��� ����

	�
� � � ������	 �

	�
� � � ����	�
(�R)

(In (�L) and (�R), the formula ���� must verify the condition in Fig. 2)

Fig. 7. Freshness Rules

	�	 �
�
� �
� � ���

�
�� �

	�
� �
(S��)

	�	 �
�
� �
� � �����

�
�� �

	�
� �
(S��)

[X and Y not free in the conclusion]
	�	 �

�
� X �Y 	 ����X

�
� �	 ����Y

�
� �
� � �����

�
�� ���

	�
� �
(S��)

[X ,X �,Y and Y � not free in the conclusion]
	�	 �

�
� X �X �	 �

�
� Y �Y �	 �

�
� X �Y 	 �

�
� X ��Y �
� � ���

�
�� ���

	�
� �
(S��)

[X not free in the conclusion]
	�	 �

�
� ������
� �

	�	 �
�
� ����X 	 �

�
� ����X
� � �����

�
�� �����

	�
� �
(S��)

��� �

	�
� �
(S��)

[X not free in the conclusion]
	�	 �� X 	 �

�
� ����X
� � ������� �

	�
� �
(S� �)

Fig. 8. World Rules.

A Spatial Logic for Concurrency (Part II) 11

4 Basic Proof Theory

In this Section we develop some proof-theory for our logic, stating several admissi-
ble proof principles and a cut elimination result for the first-order fragment. Most of
the presented proof principles are size-preserving, and instrumental to the proof of cut
elimination. We introduce a measure for the size of a derivation, in which certain oc-
currences of the () rule are not weighted. An occurrence of the inference rule () in
a derivation is simple if it applies either to an instance of (Id) or to another simple oc-
currence of (). We define the size of a derivation as the number of rule occurrences
it contains, other than simple occurrences of rule (). We then assert �� ���� � �
to state that the given sequent has a derivation of size not exceeding �. We have the
following useful admissible rules

Lemma 4.1 (Basic). The following proof principles are admissible:

[� �� �
� and� �� �

�]
�� ���� � �

�� ���� � � ��
(�)

[!� !� � � or !� !� �
 , !� not free in the premise]
�� ���� � �

�� ���!�!�����!�!�� � ��!�!��
(Ren)

�� ���� � �

�� ��� ����� � � � ����
(W)

�� ���� � �

�� ���X������X��� � ��X���
(Inst)

�� ��� ��� � � � � �

�� ���� � �
(CS)

�� ���� � �

�� �������������� � ������
(Inst�)

N.B. We write� �� �
� if�� is obtained from� by �-converting some formulas in it.

Lemma 4.2 (Replacement and Instantiation). The following rules are admissible

[X not free in �]
��� X � � � X � � ��� X � � � X � �

��� Y � "��� � Y � "���

[� not free in the conclusion]
���� � �

��������� � ������

The first-order fragment of the spatial logic enjoys the cut elimination property, and
therefore the subformula property. This result is a reasonable evidence that our addition
of structural and freshness constraints to sequents and inference rules is rather canon-
ical. For instance, cuts on spatial formulas are eliminated in a rather uniform way, by
matching process eigenvariables (on one side) against the given witnesses (on the other),
and then eliminating the remaining (redundant) structural constraints. The cut case for
freshness quantifications is more interesting, since it relies on a proof transformation
that can be interpreted as �-conversion in elements of the intended model (processes)
inside our logic (to be distinguished from ��� in Lemma 4.1, which is about the syntax
of the derivations). For this transformation to go through, explicit transpositions needed
to be included both in the �-algebra and in the syntax of terms in formulas.

Theorem 4.3 (Cut Elimination). If a sequent has a first-order derivation then it has a
derivation without instances of the (Cut) rule.

Full proofs of Theorem 4.3 and related results can be found in [3], where a set of derived
connectives and respective proof rules is also presented.

12 Luı́s Caires and Luca Cardelli

5 Examples

We now go through a sequence of short examples to show how our logic is applicable to
reasoning about distributed concurrent systems. We are necessarily brief here, and show
only very elementary examples, but most interesting logical operators are covered.

A Simple Property We show a simple derivation of the fact that ����� � � entails
�, meaning that if a process satisfies ����� � � then it satisfies �. The intuition is that
if a process � satisfies both ����� and �, then � is (structurally equivalent to) the �
process, which is the same as ���; so � satisfies � (and�). We conclude that � satisfies
�. This derivation illustrates: a property combining spatial and propositional operators;
the use of constraint manipulation; and the use of one of the world rules, namely, �����
corresponding to the “zero law” of A� processes: if � �� � � then � � �.

�� 	�	 �
�
� X �Y 	 �

�
� �	 X

�
� �
�	 X � �	Y � � � � �	� (by (Id) since �

�
�� X)

�� 	�	 �
�
� X �Y 	 �

�
� �
�	 X � �	 Y � � � � �	� (by 5, (S��) since X �Y

�
�� �)

�� 	�	 �
�
� X �Y
�	 X � �	 Y � �	 � � � � � �	� (by 4, (�L))

	� 	�
�	 � � �����	 � � � � � �	� (by 3, (�L))

� 	�
�	 � � ����� � � � � �	� (by 2, (�L))

Note that the proof is fairly simple, particularly if conducted bottom up. Most con-
straints are generated from the goal by using all the applicable left rules, and the final
constraint X 	

� � is generated by closing up the constraint set under deduction, via
(S��). Finally, (Id) involves a simple equivalence check in �. It is common for our
derivations, when read bottom-up, to have this mechanical flavor.

Freshness We show a derivation of the fact that ���	� entails ��	��. This (and
its converse) is a well-known property of ��	� [10]; the purpose here is to show the
use of the rules for freshness in a simple case. We abbreviate by ����	� the set of
constraints �� lfv���	��.

�� 	�	 ������	 �
�
� ����X
�	 � � ������ � � ������	 � (by (Id) choose �	X fresh)

�� 	�	 ������	 �
�
� ����X
� � � ������	 � � �������	 � (by 6, (� R))

�� 	�	 ������	 �
�
� ����X
� � � ����	 � � �������	 � (by 5, (�R))

�� 	�	 ������	 �
�
� ����X
� � � ����	 � � �����	� (by 4, (�R))

	� 	�	 ������	 �
�
� ����X
�	 � � ����� � � �����	� (by 3, (� L))

� 	�
�	 � � ����� � � �����	� (by 2, (�) �	 X not in conclusion)

We start with ������ for a fresh �, instead of simply with �, so that we can apply
(�) in the last step even when � occurs free in ���. It is usually the case that an
application of rules (� L) or (� R) is followed by an application of rule (�), to clean up
the constraints. Note, however, that having (�) decoupled from (�L) and (�R) allow
us to apply, in this case, (�R) twice before applying (�).

Along similar lines, we can derive interesting properties combining��	� with spa-
tial operators, for example the following one, which is important for deriving properties
of the hiding quantifier (it takes about eight steps in each direction, but with a rather
more involved set of constraints):

����� � � ���	������	�� �� � � ��	������ �

A Spatial Logic for Concurrency (Part II) 13

This derivation uses the world rule (S#�), which embeds a rather deep lemma about
�-calculus structural congruence; namely, that if ����� � ��� then there exist � �� ��

such that � � � �� �� and ����� � � � and ����� �� � �.
Equivariance In general, we have that a process � satisfies the formula ��� if

� � �����, where � is a process that satisfies �. Then � is a name which is hidden,
and hence not free, in � . So, the revelation operator has a useful meaning also in the
special case ��T: the process � satisfies ��T if and only if the name � is fresh in �
(c�� abbreviates ����). We can show than � ���T � ��T entails �������:

�� 	Z
�
� ����X 	 �

�
� ����Y
 �����Z � �������	X � T	 Y � T Z � ������� (Id)

	� 	Z
�
� ����X 	 �

�
� ����Y
Z � �	 X � T	 Y � T Z � ������� (by 3, (�))

� 	
Z � � ���T � ��T � � ������� (by 2, (�L and�L))

(Note the use of (Swap Erase) in step 3) This property can be interpreted as saying that,
for any process� , if it satisfies�, it also satisfies ������� for any fresh names� and
�. This fact is a consequence of the equivariance property of the semantics: intuitively,
if the name denoted by (say)� occurs in the formula � but not in the process � , then
we would expect the name� to be irrelevant to the fact that � satisfies �. This means
that if we swap in formula � the name� by any other fresh name �, we would expect
that � would still satisfy it (since a fresh name is as good as any other fresh name). For
example, the following provable sequent

��� ���� ����������T� ���T � ��T � ��������T�

says that if a process is about to send a fresh name on a public channel �, it can send
any other fresh name as well.

Input In our logic we have a primitive formula to observe messages, ����, cor-
responding to the output operator of the asynchronous �-calculus. We do not have a
corresponding input formula, but it can be expressed from output along the lines of
[16]. The guarantee operator is crucial to this; recall that a process P satisfies � � �
if for any � that satisfies �, we have that � �� satisfies � (this can be read out from
(�R)). We say that � satisfies � “in presence” of any � that satisfies �. We can take
the following definition of input: ����	�

�

� ��	���� � ��.
The intention is that a process satisfies the input specification ����	� if it performs

an input over a given channel � of any name � (with � bound in �), and then satisfies
the property �. The above definition says literally, that an input process is one that, in
presence of any output message � over the given channel �, at the next step (after input)
it behaves according to �.

It is then easy to verify that because of the adjunction between � and �, input and out-
put interact as expected in A� communication, that is, ���������	� entails �������:

��	� 	�	 � � X �Y
�	 X � �	�
 X � �	�
	 � � �������	 � (by (Id) choose X 	 Y fresh)
��
� 	�	 � � X �Y
�	 X � �	�
	 X �Y � ������� � � �������	 � (by (Id), for X �Y

�
�� �)

�� 	�	 � � X �Y
�	 X � �	�
	 Y � �	�
 � ������� � � �������	 � (by 4.1, 4.2, (�L))
	� 	�	 � � X �Y
�	 X � �	�
	 Y � ����	�
 � �� � � �������	 � (by 3, (�L))

� 	�
�	 � � �	�
������	�
 � ��� � � �������	 � (by 2, (�L) X 	 Y not in conclusion)

Hiding In Part I we defined a hiding quantifier: H�	� �

� ��	��� which is related
to �-calculus name restriction in an appropriate way; namely, that if process � satisfies

14 Luı́s Caires and Luca Cardelli

formula ������, then ����� satisfies H�	�. An interesting use of H�	� is in spec-
ifying “nonce generators”, that is processes that output freshly generated names on a
given channel. In �-calculus, a nonce generator can be written simply as ���������,
for a given channel ��. A nonce generator over �� can then be specified by the follow-
ing formula: Nc �

� H�	�����. We can show that, when a nonce generator interacts
with an input, the result is the acquisition of a private name:

����� � � Nc������	� � � � �H�	������� �

Before input we have a nonce generator Nc separate from the input process. After one
step, we have that the � part has acquired a name �; but noticeably this � is “hidden”
within ������ by the scope of the hiding quantifier. Hence the � part of the system
has acquired, from the nonce generator, a private name not shared with other parts of
the system (at least, not yet).

Inductive Definitions We just sketch here our treatment of recursive formulas.
First, we can combine the spatial operator � with classical negation to obtain an op-
erator 	�

�

� �� � F� � F that has the meaning that � is valid (is satisfied by any
process). Through second-order quantification, we can then define least and greatest
fixpoint operators in a style similar to $ -algebraic encodings.

%�	�
�

� �&	�	�����& � � & ��� & (where & is not free in �)

#�	�
�

� �%�	��������

These definitions turn out to enjoy the expected properties of recursive formulas, in
the form of derivable left and right rules; for example the derivable rule (#R) cor-
responds to a coinduction principle. The folding and unfolding of %�	� and #�	�
can be derived under an assumption of monotonicity of ����; this can be expressed
via the 	 operator. As an example of the use of recursion, we can specify a recursive
nonce generator (a process producing an unbounded number of fresh names) as fol-
lows: UNc �

� #�	Nc�� . By a standard coinductive argument, we can then show
that UNc�UNc entails UNc. This is simple but significant: it means that (without any
knowledge of the �-calculus implementation) two recursive nonce generators running
in parallel behave like a single recursive nonce generator; in particular, the two genera-
tors do not risk generating independently the same name twice.

6 Conclusion

We have presented a sequent calculus that has a direct interpretation in terms of dis-
tributed concurrent behaviors, including notions of resource hiding.

We believe we have obtained a unique combination of, on one hand, good proof-
theoretical structures and properties, and, on the other hand, direct applicability to con-
currency. These twin aims have driven us towards a “many worlds” formulation of
modal sequents that has been able to accommodate a wide range of unusual but strongly
motivated logical constructions.

Acknowledgements Andy Gordon contributed to early stages of Part I of this paper.
Thanks also to Peter O’Hearn for early discussions on substructural logics. Caires ac-
knowledges Microsoft Research and Profundis IST200133100.

A Spatial Logic for Concurrency (Part II) 15

References

1. L. Caires. A Model for Declarative Programming and Specification with Concurrency and
Mobility. PhD thesis, Dept. de Informática, FCT, Universidade Nova de Lisboa, 1999.

2. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). In N. Kobayashi and
B.C. Pierce, editors, Proceedings of the 10th Symposium on Theoretical Aspects of Com-
puter Science (TACS 2001), volume 2215 of Lecture Notes in Computer Science, pages 1–30.
Springer-Verlag, 2001.

3. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II). Technical Report
3/2002/DI/PLM/FCTUNL, DI/PLM FCT Universidade Nova de Lisboa, 2002.

4. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Information and Com-
putation, to appear.

5. L. Caires and L. Monteiro. Verifiable and Executable Specifications of Concurrent Objects
in �� . In C. Hankin, editor, Programming Languages and Systems: Proceedings of the 7th
European Symp. on Programming (ESOP 1998), number 1381 in Lecture Notes in Computer
Science, pages 42–56. Springer-Verlag, 1998.

6. C. Calcagno, Luca Cardelli, and Andrew Gordon. Deciding Validity in a Spatial Logic of
Trees. to appear, 2002.

7. L. Cardelli and A. D. Gordon. Anytime, Anywhere. Modal Logics for Mobile Ambients. In
27th ACM Symp. on Principles of Programming Languages, pages 365–377. ACM, 2000.

8. L. Cardelli and A. D. Gordon. Logical Properties of Name Restriction. In S. Abramsky,
editor, Typed Lambda Calculi and Applications, number 2044 in Lecture Notes in Computer
Science. Springer-Verlag, 2001.

9. M. Dam. Relevance Logic and Concurrent Composition. In Proceedings, Third Annual
Symposium on Logic in Computer Science, pages 178–185, Edinburgh, Scotland, 5–8 July
1988. IEEE Computer Society.

10. M. Gabbay and A. Pitts. A New Approach to Abstract Syntax Involving Binders. In 14th
Annual Symposium on Logic in Computer Science, pages 214–224. IEEE Computer Society
Press, Washington, 1999.

11. M. Hennessy and R. Milner. Algebraic laws for Nondeterminism and Concurrency. JACM,
32(1):137–161, 1985.

12. P. O’Hearn and D. Pym. The Logic of Bunched Implications. The Bulletin of Symbolic
Logic, 5(2):215–243, 1999.

13. A. Pitts. Nominal Logic: A First Order Theory of Names and Binding. In B.C. Pierce
N. Kobayashi, editor, Proceedings of the 10th Symposium on Theoretical Aspects of Com-
puter Science (TACS 2001), volume 2215 of Lecture Notes in Computer Science, pages 219–
235. Springer-Verlag, 2001.

14. G. Plotkin and M. Abadi. A logic for parametric polymorphism. In M. Bezem and J. F.
Groote, editors, International Conference on Typed Lambda Calculi and Applications, num-
ber 664 in Lecture Notes in Computer Science, pages 361–375, Utrecht, The Netherlands,
March 1993. Springer-Verlag. TLCA’93.

15. J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Proceed-
ings of the Third Annual Symposium on Logic in Computer Science, Copenhagen, Denmark,
2002. IEEE Computer Society.

16. D. Sangiorgi. Extensionality and Intensionality of the Ambient Logics. In 28th Annual
Symposium on Principles of Programming Languages, pages 4–13. ACM, 2001.

17. A. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. Ph.D. thesis,
Dept. of Computer Science, Edingburgh University, 1994.

18. Luca Viganò. Labelled Non-Classical Logics. Kluwer Academic Publishers, Dordrecht,
2000.

